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Temperature and density dependence of the self-diffusion coefficient and Mori coefficients
of Lennard-Jones fluids by molecular dynamics simulation
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The ability of a Mori series expansion to predict the self-diffusion coefficients of Lennard-Jodetuids
has been tested for a wide range of temperatures £4145-kT/e=0.71) and densities (1.84p* =poi/e
=0.20). The self-diffusion coefficients and the Mori series coefficients were calculated from the same mo-
lecular dynamics simulations and fitted to simple analytic expressions. Exponential, Gaussian, secant hyper-
bolic, and Joslin-Gray memory functions up to the first two Mori coefficients have been used in the analytic
expressions for the self-diffusion coefficient. The Mori coefficients exhibit a near linear dependence with
temperature in the stable fluid phase, with the second Mori coefficient being strongly temperature but more
weakly density dependeiftonfirming earlier simulation results of Lee and Chur@n balance it appears that
the Gaussian memory function gives the best agreement with the simulation diffusion coefficients considering
the whole LJ phase diagram. Also we find that at low densities the Gaussian approximation for the diffusion
coefficient follows the expectedT*/p* limiting behavior.[S1063-651X97)04304-3

PACS numbgs): 66.10—x, 82.20.Tr, 82.20.Wt

[. INTRODUCTION higher-order terms as these Mori coefficients are difficult to
compute with any precision. This is a problem as the series
Transport coefficients calculated using the Green-Kubaloes not appear to be rapidly convergent. The accuracy of
(GK) integral formulas require appropriate correlation func-evaluation of the Mori coefficients deteriorates rapidly with
tions which can, in principle, be calculated by molecularincreasingn and also becomes progressively more sensitive
dynamics(MD) computer simulation. The self-diffusion co- tg the procedure used to evaluate the momé¢ais]. The
efficientD or shear viscosity; for example, require the ve- mgst important factor influencing the agreement with exact
locity or the off-diagonal pressure tensor component autocor(j e, simulation values appears to be the analytic form cho-
relation functions in the(GK) integrand. Approximate sen for the memory function, which is still arbitrary and not
expressions for the transport coefficients can be written USingurprisineg the optimum form varies with the state point.
the generalized Langevin equatit@LE) formulation for the The use of only the first two Mori coefficients means that
time correlation function in terms of a hierarchy of memory 5 short-time memory function is implicitly being considered
functions. The problem that arises is that the analytic form ofy the self-diffusion coefficient study. Even though it is
the memory function has to be proposed. In general, thgnown that the self-diffusion coefficient also depends on the
memory function M(t) belongs to a set of functions medjum- and long-time memory function, as was discovered
Mn(t), with n=0,1,2,.. ., which obey the set of coupled by Levesque and Verldi], and systematically tested in a
Volterra equation$l]. The Laplace transforivi(s) first de-  later extensive molecular dynamics investigation of the bi-
rived by Mori[2] can be written as a infinite continued frac- modal relaxations time models for the memory function by
tion including the so-calledamping matrice®r Mori coef-  Lee and Chund7]. Its dependence on the intermolecular
ficients K, and are the zero-time values of the memorypotential has also been investigated]. It is nevertheless
function M,(0+). Thus, the predicted value for a given evident that in a number of recent simulation studies.,
transport coefficient will be affected by the manner in whichbased around information thedr,5]) that the transport co-
the Mori series is truncatd@]. A variety of closure schemes efficients of the Lennard-Jones fluids are reasonably well ac-
and analytic forms for the memory function have been pro-counted for by the two first Mori coefficients. All practical
posed that give reasonable predictions for the transport coe&pplications of Mori theory for the memory function are lim-
ficients going up to the sixth frequency moment of the timeited to relatively low-order expansions. Therefore, we focus
correlation function[4,5]. The second frequency moment is our study on the state point dependence of the first two Mori
associated with the first Mori coefficielt; , the fourth fre-  coefficients in order to make progress in choice of closure
guency moment with the second Mori coefficiétt, and so  and to compare our results with the previous works at the
on[4]. same state points. The inclusion of the medium and long
The overall conclusion from these studies is that the firstelaxation times require higher-order Mori coefficients to be
two Mori coefficients give reasonable values for the transporincluded in the Mori expansiof] for the self-diffusion co-
coefficients. Also there is no apparent advantage in going tefficient. It could be argued that the discovery of an optimum
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analytic form for the memory function at the, andK, level m
will incorporate these long-time effects semiempirically by K1=U1=m- E a?), (5)
virtue of a mean-field cancellation of errors. =1

Before further progress can be made it is useful to dis- - : -
cover how the Iovl\?ergMori coefficients depend on tempera—Wherea‘ 's the acceleration of particle and
ture and density, which might lead to improved closure pro- U,

cedures. In this paper we investigate further the dependence Ky=—"-—Kj. (6)
of the self-diffusion coefficienD on temperaturd and den-

sity p, and the relative merits of the closure schemes in the ap exact solution for the memory function in E€) is

Mori series as a function of the state point. In order to make,st known and therefore assumptions must be made about its
progress in choice of closure we focus on the state poinfna|vtic form. Several analytic memory-function closures are
dt_ependence of the_flrst two I\/_Ion coefficients. Our rESU|tSinvestigated here, employing up to the first two Mori coeffi-
will be compared with the previous works at the same stat@jants. These are the exponential exp, GausSlarsecant
points [8,4,9. In Sec. Il will _be describeq thg theoret.ic_al hyperbolic sech, and Joslin and Gre2], (JG) closures as
background needed to obtain the self-diffusion coefficienyjiscyssed in Ref4]. The first three closures use the named
directly from the mean-square displacements by equilibriumy5ihematical functions and the last closure is an alternative

MD and also in terms of the two first Mori coefficients using yrescription based on the geometric mean of the two succes-
different mathematical solutions for the truncated Mori ex-gjye Mori coefficients. These memory functions are

pansion. In Sec. lll the simulation details are described, lead-
ing to Sec. IV with the results and the discussion and con- Mo (=K, e K34 7
clusions in Sec. V. o) =K1 ' @

Ma(t) =Kse ka2, )
Il. THEORETICAL BACKGROUND
- Y
The self-diffusion coefficient of particlecan be obtained Msect) =Kisechi — K3 ), ©
directly from MD computer simulation from the linear re- and
gion of the mean-square displaceméSD) as[10]
_ — (KoK ) Y4
(R " Maolt) =Kae T (10
' e 6t ' which are used to calculatd (0) in Eq. (3), being the time

integration of functiorf (K,,t). Substitution in Eq(2) gives
wherer;(t) is the absolute position of particleat a timet  the corresponding self-diffusion coefficients,
after an arbitrarily defined time origin an@-) denotes the

12
time average. D :k_T K_z (11)
Alternatively and according to the GLE formalism, the & m Ky’
diffusion coefficient can be obtained by the evaluation of the
time autocorrelation function of the velocity as D= V2/7D ep, (12
KT (= (va(t)v4(0 KT 2
D=—f < ( )2 ( )> dt=— , (2 Dseci=— Dexpi (13
m Jo (v2) mM(0) &
and

wherek is the Boltzmann constant,, is a Cartesian com-

ponent of the velocity of an atom of mass andM(0) is Ko\ ¥4

the Laplace transformation of the memory function at zero DJG:(K_Z) Dexp: (14

frequency, values of which are expressed in terms of the

Mori coefficients. For example, for the fourth frequency mo-where all the diffusion coefficient closures have been ex-

ment(up to the second Mori coefficientve have the generic  pressed explicitly in terms of the exponential closure, with

form different multiplying constants in the case of the Gaussian
and secant hyperbolic closures, and in terms ofKheand

= [ I K, ratio for the Joslin-Gray closure. Note that the first three,
M(0)= fo M(t)dt= fo Kif(Kz,dt, ®) Egs.(11)—(13) are functions of the quantity VK,/K; .
The coefficients can be obtained from the time average of Ill. SIMULATION DETAILS

the nth time derivative of the normalized velocity as . .
y Many temperatures and densities have been studied, some

N of them coinciding with those from previous worl&4,9] in
U :i E VRV (4) order to obtain a general expression for the density and tem-

"N\E T perature dependence of the Mori and self-diffusion coeffi-

cients. We focus here on the self-diffusion coefficient as,

being the first two Mori coefficients calculated [ddl] being a single particle property, it can be obtained with
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TABLE I. Self-diffusion coefficients, in units of-(e/m)*?, obtained from the mean-square displace-
ments and from exponential, Gaussian, hyperbolic secant, and Joslin-Gray closures. In the fourth column and
in parentheses the results are taken from R&gl], respectively. The standard errors are-5% for the
simulation self-diffusion coefficients and one digit in the last place for the Mori theory predictions. In the last
row we give S, the sum of the square of the differences between the MSD and Mori prediction for the
self-diffusion coefficients.

t* p* Dwvso Dret.rg] Dexp D¢ Dsech Dse
0.71 0.8000 0.045 0.041 0.071 0.057 0.045 0.058
0.75 0.8442 0.031 0.065 0.052 0.041 0.054
0.722 0.8442 (0.030 (0.063  (0.050  (0.040  (0.052
1.00 0.7200 0.091 0.10 0.122 0.097 0.077 0.091
(1.09 (0.731) (0.097 (0.1259  (0.099  (0.079  (0.092
0.86 0.7608 0.066 0.066 0.098 0.078 0.062 0.075
1.20 0.4774 0.30 0.31 0.288 0.230 0.184 0.177
1.22 0.6470 0.14 0.16 0.180 0.144 0.115 0.125
1.81 0.600 0.26 0.28 0.301 0.24 0.191 0.192
1.81 0.700 0.20 0.17 0.226 0.18 0.144 0.157
1.90 0.801 0.13 0.13 0.201 0.16 0.128 0.146
1.90 0.801 (0.13 (0179  (0.139  (0.11)  (0.128
2.57 0.200 1.45 1.54 1.67 1.33 1.06 0.73
251 0.300 1.00 0.89 1.05 0.84 0.67 0.52
2.47 0.400 0.68 0.611 0.73 0.58 0.46 0.39
2.48 0.500 0.45 0.478 0.54 0.43 0.34 0.32
(2.50 0.500 (0.47)) (0532 (0425 (0339  (0.309
2.50 0.600 0.34 0.38 0.39 0.31 0.25 0.25
2.50 0.803 0.18 0.18 0.23 0.18 0.14 0.16
2.50 (0.800 (0.173 (0.220 (0.176 (0.140 (0.1579
2.51 1.040 0.07 0.07 0.13 0.10 0.08 0.10
(2.50 (1.0649 (0.05)) (0.110 (0.088 (0.070 (0.092
3.46 0.400 0.79 0.98 0.78 0.62 0.52
(0.819 (0.97) (0.774 (0.618 (0.500
3.46 0.500 0.65 0.66 0.68 0.54 0.43 0.39
3.41 0.600 0.44 0.43 0.50 0.40 0.32 0.31
3.46 0.700 0.36 0.39 0.31 0.25 0.26
(0.33)) (0.382 (0.305 (0.243 (0.249
3.54 0.803 0.25 0.20 0.30 0.24 0.19 0.21
3.35 1.040 0.10 0.10 0.16 0.13 0.10 0.13
4.45 0.700 0.44 0.46 0.50 0.40 0.32 0.32
4.45 0.803 0.30 0.31 0.38 0.30 0.24 0.26
=24 (Di msp - Di.closurd = 0.141 0.079 0.479 0.840

greater precision than any of the other transport coefficientsivative [Eq. (6)]. The updated canonical ensembM\(T) in

The technical procedure we have followed here is similar tahe NoseHoover formulation[18,19 was used with an iso-

that we developed previously for the mass and size depenhermal relaxation time of+=0.05[17,20. The time aver-

dence of a solute particle in a solvent system at a giveyge for the mean-squared displacement in Ewas taken

(TA”’ L) statedp\c]nnt[l&téll]. _ _ LU over 500 time steps and the simulations were carried out for

ennard- on%s( ) interaction  potential, U(r) — 5_ g5, 165 time steps. Cubic periodic boundary conditions

=4¢[(alr)“—(olr)°] was used, where is the well depth - . .

were used on systems containifg=256 particles as in

ando is the diameter of the particle taken as the units of the

energy and length, respectively. The interaction was trunRRefs:[8,4], where it was shown that there is a negligible

cated at an intermolecular separationref2.50, and the system size dependence of the transport coefficientNfor
spherical distance for the Verlet neighbor table was Values equal to or larger thaN=256 [21]. The simulated
=2.75 [15]. The Tixvaerd algorithm was used with a time Systems included high-density metastable states exemplified
step ofh=0.005(Mo?/€)Y? [16]. The algorithm permits the by the state point T*,p*)=(0.71,1.04), up to high tem-
direct calculation ofK,; and K, during the simulation as perature and low-density fluid states typified by*(p*)
being a function of the forcEEq. (5)] and its first time de- =(4.45,0.2).
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) - o FIG. 2. The temperature dependence of the self-diffusion coef-
FIG. 1. Density dependence of the diffusion coefficients for sev-icients for a series of isochores.

eral of the isotherms of Table I. The filled in symbols are the results
using the MSD method, while open symbols correspond to thos?)G>DJG

. A with the Dg consequently much closer @ygp.
calculated from the Gaussian approximation closure. ¢ q y MSD

The crossover of th®g values from below to above the
Dumsp Values, which we find also for JG occurs at lower
densities. There are smaller relative differences between
The Mori series and MSD self-diffusion coefficients are Dysp andDg, as can be confirmed from Table | and as also
given in Table | for a wide range off¢,p*). The diffusion  seen in Fig. 1 for thd™* =1.81 isotherm.
coefficients obtained directly from the simulation using the In order to come to a conclusion about the best closure for
MSD method are in good agreement with previous calculathe diffusion coefficient the standard deviation in the differ-
tions (e.g.,[8,4]) showing the expected general trend thatences for the 24 evenly distributed state points studied have
D increases with temperature and decreases with increasifigen calculated. These are shown in the last row of Table I.
density. If we now compare the several closures, we see firdthe Gaussian approximation has the smallest standard devia-
that the self-diffusion coefficients obtained with the expo-tion of the four closures. We propose that the Gaussian clo-
nential approximation are larger than those obtained by theure is, on balance, the best representation of the MSD re-
MSD method, except fol* =1.20 andp* =0.4774. This

IV. RESULTS

TABLE Il. Parameters characterizing the linear dependence of

difference for a given value of* increases with the density,

but for a given density tends to decrease with increasinéhe self-diffusion coefficient with temperature for the densities in
T*. Considering all the cases studied, we find that typicallyVich the linear regression can be appliede Fig. 2 The simu-

Deyp is about 25% greater theDygp -

The secant hyperbolic closure gives smaller values for thgrom the

diffusion coefficient than the MSD method for most of the
cases studied. However, the differences get smaller with int—
creasing density for a given temperature and become equgq

lation derived data have been fitted to the analytic foEnT*)
=a+bT*

. The upper row corresponds to the coefficients obtained
MSD calculations and the lower row to those obtained

(and evenDge>Dysp) for the lower temperatures and i, tapie |.

higher densities; see, for example, the data entries for

from the Gaussian approximation. In the last columepresents
e sum of the squares of the differences between the MSD and
ori prediction for the self-diffusion coefficients, as in the last row

(T*,p*)=(0.71,0.8) and0.75,0.8442in Table I. ot a b 10°S
A comparison between the Joslin-Gray closure and the
MSD method shows a clear crossover behavior. At a give®-60 0.030 0.122 24
temperatureD,sp>D ;g for the low densities where there 0.017 0.116 4
can be a large differendef up to ~100% between the two 0.70 0.012 0.099 5
calculated values. This difference not only diminishes with 0.021 0.086 1
the increasing density, but the relation reverses for mid-t00.80 0.005 0.067 1.2
high densities. A good example of this trend can be seen in 0.015 0.064 0.7
Table | forT*=2.5. The Gaussian approximation is similar 0.91 —0.030 0.057 7.8
to the JG method in its relationship with the MSD method. 0.013 0.050 0.7
However there are significant quantitative differences. The o4 —0.030 0.037 1.6
Gaussian and Joslin-Gray closures are quite similar in the 0.004 0.037 0.2

first four state points in the table but f@* =1.20 we find
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TABLE Ill. The coefficients specifying the linear dependence of

900 Tﬂ =550 the first Mori coefficient on temperature for all the densities studied.
oo The simulation data have been fitted to the analytic fétpiT*)
30001 S isaed =c+dT*. The asteriskdaggey means that the lowesgtwo low-
- es) temperatures have been taken out for the linear regression. The
?‘_) 5500 last column is as for Table I.
% . p* c d 10728
S
o 0.20¢ 38.77 8.78 0.36
g 1500 0.30 49.53 19.36 0.15
= 0.40° 64.57 29.46 0.65
0.50¢ 83.86 43.50 1.57
10007 0.60 110.66 58.70 1.87
0.70 125.42 85.32 3.22
500 0.80 173.20 111.98 11.80
0.91* 284.60 131.94 10.60
0 1.04 468.83 178.54 1.45
0.00 1.20
p* » plotted in the following figures to avoid too many overlap-

ping lines. In Fig. 1, the diffusion coefficients obtained di-
FIG. 3. Density dependence of the Mori coefficients for all the rectly by molecular dynamicB ysp shown as filled-in sym-
isotherms studied. Filled ifoper) symbols correspond to the first hols and Dg by open symbols are plotted for several
(second Mori coefficient, directly obtained from theN(VT) simu-  jsotherms. The decay of the diffusion coefficient is similar
lation. for both methods; however, there are notable relative trends.

i For the low-to-middle range temperaturgs to T* ~2.50
sults, with the JG method the worst of the four closureand densitiegup to p* ~0.7) the self-diffusion coefficients

schemes. The Gaussian gives best overall agreement with t% MSD are larger than those calculated from the Gaussian
MSD results, particularly for mid-to-high temperatures andapproximation. However, fo*~0.8 we find thatDg

for any density. In the following discussion we will concen- _ ; P
trate on the T* .p*) dependence of the self-diffusion coef- ~Dpsp at all temperatures..For higher densities, in contrast,
' D¢>Dysp for the low-to-mid temperatures but tend to be

ficient obtained by the Gaussian approximation with the first, o imately equal for the higher temperatures. This trend
two Mori coefficients. . is also apparent in Fig. 2, which compares the self-diffusion
Although we have chosen six temperatu(@s ?0-7}' coefficients along a series of isochores. The statistical fluc-
1.20, 1.81, 2.50, 3.45, and 44%and nine densitiegp tuations in theDygp, Obtained are much greater than those
:O.'ZO' 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.91, and)1a04 g5 the Gaussian approximation, for the low-to-mid densi-
which to perform our study, not all of the data have bee”ties (Up to p*~0.5). At higher density the two sets of self-

diffusion coefficients show a near-linear dependence on tem-

3500 T perature with quite good agreement betweBr; and
TIeTe50 Dusp: in fact, they coincide fop* =0.8 at all temperatures
3000 erees 228'28 considered. For completeness, the coefficients of the linear
“ *eex p=0.60
E 2500 mgz%;é% TABLE IV. The parameters characterizing the linear depen-
< 44 0=0.91 dence of the second Mori coefficient on temperature for all the
&E‘o ok p=1.04 densities studied. The experimental data have been fitted to
8 20007 K,(T*)=e+fT*. The asterisk(daggey means that the lowest
o (two lowes) temperatures have been taken out for the linear regres-
% 1500 — sion. The last column is as for Table Il.
p* e f 1038
1000
0.20 140.17 596.65 6.57
500 0.30 105.18 615.40 0.72
0.40 97.70 627.91 3.74
ojﬁ 0.50 88.85 643.15 1.78
0.00 5.00 0.60 69.58 654.60 3.62
0.70 37.56 680.50 4.55
T* 0.80 46.25 691.32 1.94
0.91* 50.01 718.19 1.21
FIG. 4. As for Fig. 3, except the temperature dependence of the.04' 33.3 775.05 1.67

Mori coefficients for a series of isochores is shown.
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FIG. 5. \T*/p* dependence of the Gaussian self-diffusion co-

efficient for low-to-mid densities. . . . .
FIG. 6. The same as Fig. 5 for mid-to-high densities.

regression for the diffusion coefficient obtained by MSD andThig “point of gyration” is close to the lowest temperature
Gaussian approximation are listed in Table Il for the densi¢gnsidered, i.eT* =0.71, which can be considered to be the
ties where temperature linearity can be applied. _ minimum temperature for which linear regression can be ap-
Turning now to the T*,p*) dependence of the Mori co- pjied since below that value the system is metastfdleln
efficients, Fig. 3 gives the density dependence of the first tWeraples 111 and IV the coefficients obtained from the linear
Mori coefficients(Ky, filled-in symbols;K, open symbols  regression foK,(T*) andK,(T*) have been collected. The
along several isotherms. Th&, values are typically several K, values shown in Figs. 3 and 4 are in good agreement with
orders of magnitude greater than the corresponllingBoth  tnhose reported in Ref9] for the same state points.
coefficients increase with temperature and density, varying Experimentally the self-diffusion coefficient in dense flu-
less dramatically with density fd{, than forK;. When the jgg goes as-T*/p* at constant pressuf@2,23. This is in
temperature decreases #g coefficient becomes essentially contrast to the gas limitfT*/p* at zero density. The linear
density independent, especially for =0.71 and 1.20. At temperature dependence arises from the synergistic effect of
the higher densities for these low-temperature isotherms, th@creased kinetic energy and liquid expansion with increas-
Mori coefficients show anomalous behavior that we attributgng temperaturgthe latter makes available additional free
to the fact t.hat the fluids are in the two-phase region of thg,gjume in which the molecules can movelong isochores
LJ phase diagrari]; there is a sharp decay K, andK;,  this second contribution is not present and we recover the
as can be seen in Fig. 3 fof {,p*)=(0.7,0.91),(0.7,1.04,  gas temperature dependence at all densities, as observed
and (1.2,1.04. The Mori coefficients are essentially linear many times by MD simulation for simple fluidge.g.,
with temperature at fixed densitgee Fig. 4 apart from the [24,25). In Fig. 5 we have plotte®¢ vs VT*/p* for sev-
several low-temperature high-density metastable points. Thg.,| jsochores. There is linear behavior @, for low-to-
K, straight line regimes shift upwards with isochore density;iq densities(especially forp* =0.3 at all temperatures

the slope and ordinate intercept increase. The correspondinggied, and the parameters of the linear regression of these

Kz straight lines appear to pivot about a point in the planeyaia are presented in Table V. The near-linear regions of the

with increasing slopes and decreasing ordinate interceplyq jowest density isochores are practically parallel. How-
ever, for higher densities the slopes tend to diminish with

TABLE V. The coefficients specifying the linear dependence of

the Gaussian Mori theory prediction for the self-diffusion coeffi-  TABLE VI. The coefficients specifying the dependence of the

cient on temperature for the low-to-mid densities studied. The simuGaussian self-diffusion coefficient on temperature for the mid-to-

lation data have been fitted to the analytic foly(T*)=g high densities studied. The simulation data have been fitted to the

+h(yT*/p*). Last column is as in Table I. analytic form Dg(T*)=i+j(JT*/p*)+k(JT*/p*)2 Last col-

umn is as in Table II.

P g h 10°S

N . .
0.20 —1.42 0.36 7.0 P ! J k i
0.30 —0.74 0.30 0.2 0.70 ~0.019 0.040 0.032 6
0.40 ~0.49 0.28 0.9 0.80 ~0.008 0.026 0.034 5
0.50 032 0.24 20 0.91 ~0.021 0.038 0.031 7
0.60 —0.22 0.21 0.8 1.04 0.001 0.001 0.040 3
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250 TABLE VII. The coefficients specifying the dependence of the
Gaussian self-diffusion coefficient over all the isotherms studied.
o E%-jg The simulation data have been fitted to the analytic f@rg(p*)
—eeee =550 =14+m(T*/p*). Last column is as in Table II.
2.00 s T=1.80
IR T ! m 10°S
150 4 4.45 —0.36 0.25 3
3.45 —0.32 0.24 4
O 2.50 —0.20 0.19 4
= 1.80 —-0.14 0.17 10
1007 1.20 ~0.05 0.11 3
0.50 -
ior for a wide spectrum of temperature and densities is for
the Gaussian approximation. It could be argued that the su-
0.00 - periority of the Gaussian closure arises merely from a can-

0.00 200 400 600 800 1000 1200 cellation of errors, but of all thad hocclosures it is the only
s % one that leads to a time-reversible velocity autocorrelation
VT*[p , .
function, and therefore its success may have more fundamen-
tal significance. The Gaussian function representation of the
FIG. 7. JT*/p* dependence of the Gaussian self-diffusion co-Self-diffusion coefficient in terms of the two Mori coeffi-
efficient for all the isotherms studied. cients, Eq(12), has advantages over the direct method as the
slope of the mean-square displacements can have large un-

increasing density. For mid-to-high densities @7 certainty, especially at lower densities and moderate tem-
<1.04) a linear regression, it is no longer the best fit to thePeratures, as can be seen in Fig. 2. In fact, the Gaussian
data, as can be seen also in Fig. 6. In fact, a second-ord@pproximation(or some improvement thergotould ulti-
polynomial regression in powers qff*/p* is required(see ~ Mately provide a better route to the self-diffusion coefficient
Table VI, which lists the coefficients of these regressions than by the direct method, especially for the lower tempera-
Note that for the highest density, tli¥; values are practi- tures and densitiesee Fig. 2 where molecular dynamics is
cally proportional to {/T*/p*)?, as noted by Levesque and not an efficient technique for exploring phase space. How-
Verlet, for similar densitie§6]. Figure 7 and Table VIl give ever, for mid-to-high densities, both methods are consistent
the Dg vs T*/p* for all the isotherms. As can be seen, all in giving the same linear behavior with temperature, as is
the isotherms are close to being straight lines with significanshown in Fig. 2, and from their corresponding linear regres-
overlap at the high densities and low temperatyse®n in  sion parameters given in Table II.
the bottom left part of Fig. )7 Taking the best fit as the The self-diffusion coefficients are linear with density for
reference lingT* =2.5 in Table VI) one can see that in the the lowest isotherm considered, but decay as a higher-order
high-temperature limife.g., T* =3.45 and 4.4bthe straight  polynomial for the higher temperature isotherms; the order
lines practically coincide while for the lower temperaturesof the polynomial increases with temperatusee Fig. 1
their slopes decrease drastically and curve over tending tBor the isothermT* =1.20 a second-order dependence on
zero slope for the lowest temperatureTof=0.71 (exclud-  density is found, whereas far* =1.81 and 2.50 it is third
ing the metastable state points in dhis order and foiT* = 3.45 and 4.45 it is fourth order. This is the
case for both the MSD and Gaussian approximation meth-
ods, the results from the latter being a better fit to a polyno-
mial analytic form. The first Mori coefficient increases as a
As suggested in our previous wofR6] we have evalu- polynomial with density(see Fig. 3, from first order for the
ated the first two Mori coefficients and self-diffusion coeffi- lowest isothermiT* =0.71, to second order for the higher at
cient for many *,p*) values to determine the state point T* =4.45. In contrast, the second Mori coefficient is less
dependence of these coefficients, a similar procedure to thaensity dependent, especially for the two lowest isotherms
which we used for the effects of mass and volume changes dht least for the state points in which the system remains an
a single solute particlgl3,14). Table | reveals, in agreement equilibrium liquid and smoothly curves upwards with in-
with Ref.[4], that the relative merits of the closures dependcreasing density for the higher temperature isotherms. Both
on the point in the LJ phase diagram at which the simulatiorMori coefficients are essentially linear with temperature at
is performed. The hyperbolic secant closure is closest to théixed density, with a slope increasing with density as can be
MSD values, for temperatures and densities close to theeen in Fig. 4. In Tables Il and IV the Mori coefficients are
triple point, e.g., T*,p*)=(0.71,0.80) and T*,p*) fitted to a linear regression if*.
=(0.75,0.8442). The Joslin-Gray or even the exponential As shown in Fig. 5 and Table V for low-to-mid densities
closure are better for higher temperatures and lower densitigbe self-diffusion coefficients in the Gaussian approximation
[see, for example, the statesT*(p*)=(1.0,0.72) and are linear in (T*/p*), as has been found in previous MD
(T*,p*)=(1.20,0.4774) in Table]l The best overall behav- simulation studie$8,24,25. Although for the higher densi-

V. DISCUSSION AND CONCLUSIONS
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ties a second-order polynomial iiT*/p* is a better repre- temperature dependent, which could have implications for

sentation of the datésee Fig. 6 and Table VIAs Dg is
proportional toTK,/K, from Egs.(11) and (12), then we
can conclude tha{K,/K; is proportional to (T* p*) .

improved Mori series closures.
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