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Temperature and density dependence of the self-diffusion coefficient and Mori coefficients
of Lennard-Jones fluids by molecular dynamics simulation

Marı́a J. Nuevo and Juan J. Morales
Departamento de Fı´sica, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain

David M. Heyes
Department of Chemistry, University of Surrey, Guildford GU2 5XH, United Kingdom

~Received 23 October 1996!

The ability of a Mori series expansion to predict the self-diffusion coefficients of Lennard-Jones~LJ! fluids
has been tested for a wide range of temperatures (4.45>T*5kT/e>0.71) and densities (1.04>r*5rs3/e
>0.20). The self-diffusion coefficients and the Mori series coefficients were calculated from the same mo-
lecular dynamics simulations and fitted to simple analytic expressions. Exponential, Gaussian, secant hyper-
bolic, and Joslin-Gray memory functions up to the first two Mori coefficients have been used in the analytic
expressions for the self-diffusion coefficient. The Mori coefficients exhibit a near linear dependence with
temperature in the stable fluid phase, with the second Mori coefficient being strongly temperature but more
weakly density dependent~confirming earlier simulation results of Lee and Chung!. On balance it appears that
the Gaussian memory function gives the best agreement with the simulation diffusion coefficients considering
the whole LJ phase diagram. Also we find that at low densities the Gaussian approximation for the diffusion
coefficient follows the expectedAT* /r* limiting behavior.@S1063-651X~97!04304-3#

PACS number~s!: 66.10.2x, 82.20.Tr, 82.20.Wt
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I. INTRODUCTION

Transport coefficients calculated using the Green-Ku
~GK! integral formulas require appropriate correlation fun
tions which can, in principle, be calculated by molecu
dynamics~MD! computer simulation. The self-diffusion co
efficientD or shear viscosityh for example, require the ve
locity or the off-diagonal pressure tensor component auto
relation functions in the~GK! integrand. Approximate
expressions for the transport coefficients can be written u
the generalized Langevin equation~GLE! formulation for the
time correlation function in terms of a hierarchy of memo
functions. The problem that arises is that the analytic form
the memory function has to be proposed. In general,
memory function M (t) belongs to a set of function
Mn(t), with n50,1,2,. . . , which obey the set of couple
Volterra equations@1#. The Laplace transformM̃ (s) first de-
rived by Mori @2# can be written as a infinite continued fra
tion including the so-calleddamping matricesor Mori coef-
ficients Kn and are the zero-time values of the memo
function Mn(01). Thus, the predicted value for a give
transport coefficient will be affected by the manner in whi
the Mori series is truncated@3#. A variety of closure scheme
and analytic forms for the memory function have been p
posed that give reasonable predictions for the transport c
ficients going up to the sixth frequency moment of the tim
correlation function@4,5#. The second frequency moment
associated with the first Mori coefficientK1 , the fourth fre-
quency moment with the second Mori coefficientK2 , and so
on @4#.

The overall conclusion from these studies is that the fi
two Mori coefficients give reasonable values for the transp
coefficients. Also there is no apparent advantage in goin
551063-651X/97/55~4!/4217~8!/$10.00
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higher-order terms as these Mori coefficients are difficult
compute with any precision. This is a problem as the se
does not appear to be rapidly convergent. The accurac
evaluation of the Mori coefficients deteriorates rapidly w
increasingn and also becomes progressively more sensi
to the procedure used to evaluate the moments@3,5#. The
most important factor influencing the agreement with ex
~i.e., simulation! values appears to be the analytic form ch
sen for the memory function, which is still arbitrary and n
surprisingly the optimum form varies with the state point.

The use of only the first two Mori coefficients means th
a short-time memory function is implicitly being considere
in the self-diffusion coefficient study. Even though it
known that the self-diffusion coefficient also depends on
medium- and long-time memory function, as was discove
by Levesque and Verlet@6#, and systematically tested in
later extensive molecular dynamics investigation of the
modal relaxations time models for the memory function
Lee and Chung@7#. Its dependence on the intermolecul
potential has also been investigated@3#. It is nevertheless
evident that in a number of recent simulation studies~e.g.,
based around information theory@4,5#! that the transport co-
efficients of the Lennard-Jones fluids are reasonably well
counted for by the two first Mori coefficients. All practica
applications of Mori theory for the memory function are lim
ited to relatively low-order expansions. Therefore, we foc
our study on the state point dependence of the first two M
coefficients in order to make progress in choice of clos
and to compare our results with the previous works at
same state points. The inclusion of the medium and lo
relaxation times require higher-order Mori coefficients to
included in the Mori expansion@7# for the self-diffusion co-
efficient. It could be argued that the discovery of an optimu
4217 © 1997 The American Physical Society
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4218 55MARÍA J. NUEVO, JUAN J. MORALES, AND DAVID M. HEYES
analytic form for the memory function at theK1 andK2 level
will incorporate these long-time effects semiempirically
virtue of a mean-field cancellation of errors.

Before further progress can be made it is useful to d
cover how the lower Mori coefficients depend on tempe
ture and density, which might lead to improved closure p
cedures. In this paper we investigate further the depend
of the self-diffusion coefficientD on temperatureT and den-
sity r, and the relative merits of the closure schemes in
Mori series as a function of the state point. In order to ma
progress in choice of closure we focus on the state p
dependence of the first two Mori coefficients. Our resu
will be compared with the previous works at the same s
points @8,4,9#. In Sec. II will be described the theoretic
background needed to obtain the self-diffusion coeffici
directly from the mean-square displacements by equilibri
MD and also in terms of the two first Mori coefficients usin
different mathematical solutions for the truncated Mori e
pansion. In Sec. III the simulation details are described, le
ing to Sec. IV with the results and the discussion and c
clusions in Sec. V.

II. THEORETICAL BACKGROUND

The self-diffusion coefficient of particlei can be obtained
directly from MD computer simulation from the linear re
gion of the mean-square displacement~MSD! as @10#

Di5 lim
t→`

^ur i~ t !2r i~0!u2&
6t

, ~1!

wherer i(t) is the absolute position of particlei at a timet
after an arbitrarily defined time origin and^•••& denotes the
time average.

Alternatively and according to the GLE formalism, th
diffusion coefficient can be obtained by the evaluation of
time autocorrelation function of the velocity as

D5
kT

m
E
0

` ^va~ t !va~0!&

^va
2&

dt5
kT

mM̃~0!
, ~2!

wherek is the Boltzmann constant,va is a Cartesian com
ponent of the velocity of an atom of massm, and M̃ (0) is
the Laplace transformation of the memory function at z
frequency, values of which are expressed in terms of
Mori coefficients. For example, for the fourth frequency m
ment~up to the second Mori coefficient! we have the generic
form

M̃ ~0!5E
0

`

M ~ t !dt5E
0

`

K1f ~K2 ,t !dt. ~3!

The coefficients can be obtained from the time averag
thenth time derivative of the normalized velocity as

Un5
1

N K (
i51

N

vi
n
•vi

nL , ~4!

being the first two Mori coefficients calculated as@11#
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3NkT K (
i51

N

ai
2L , ~5!

whereai is the acceleration of particlei , and

K25
U2

K1
2K1 . ~6!

An exact solution for the memory function in Eq.~2! is
not known and therefore assumptions must be made abou
analytic form. Several analytic memory-function closures
investigated here, employing up to the first two Mori coef
cients. These are the exponential exp, GaussianG, secant
hyperbolic sech, and Joslin and Gray@12#, ~JG! closures as
discussed in Ref.@4#. The first three closures use the nam
mathematical functions and the last closure is an alterna
prescription based on the geometric mean of the two suc
sive Mori coefficients. These memory functions are

Mexp~ t !5K1e
2K2

1/2t, ~7!

MG~ t !5K1e
2K2t

2/2, ~8!

M sech~ t !5K1sech~2K2
1/2t !, ~9!

and

M JG~ t !5K1e
2~K2K1!1/4t, ~10!

which are used to calculateM̃ (0) in Eq. ~3!, being the time
integration of functionf (K2 ,t). Substitution in Eq.~2! gives
the corresponding self-diffusion coefficients,

Dexp5
kT

m

K2
1/2

K1
, ~11!

DG5A2/pDexp, ~12!

Dsech5
2

p
Dexp, ~13!

and

DJG5SK1

K2
D 1/4Dexp, ~14!

where all the diffusion coefficient closures have been
pressed explicitly in terms of the exponential closure, w
different multiplying constants in the case of the Gauss
and secant hyperbolic closures, and in terms of theK1 and
K2 ratio for the Joslin-Gray closure. Note that the first thre
Eqs.~11!–~13! are functions of the quantityTAK2/K1 .

III. SIMULATION DETAILS

Many temperatures and densities have been studied, s
of them coinciding with those from previous works@8,4,9# in
order to obtain a general expression for the density and t
perature dependence of the Mori and self-diffusion coe
cients. We focus here on the self-diffusion coefficient
being a single particle property, it can be obtained w
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TABLE I. Self-diffusion coefficients, in units ofs(e/m)1/2, obtained from the mean-square displac
ments and from exponential, Gaussian, hyperbolic secant, and Joslin-Gray closures. In the fourth colu
in parentheses the results are taken from Refs.@8,4#, respectively. The standard errors are'65% for the
simulation self-diffusion coefficients and one digit in the last place for the Mori theory predictions. In th
row we giveS, the sum of the square of the differences between the MSD and Mori prediction fo
self-diffusion coefficients.

t* r* DMSD DRef. @8# Dexp DG Dsech DJG

0.71 0.8000 0.045 0.041 0.071 0.057 0.045 0.058
0.75 0.8442 0.031 0.065 0.052 0.041 0.054

~0.722! 0.8442 ~0.030! ~0.063! ~0.050! ~0.040! ~0.052!
1.00 0.7200 0.091 0.10 0.122 0.097 0.077 0.091

~1.05! ~0.731! ~0.097! ~0.125! ~0.099! ~0.079! ~0.092!
0.86 0.7608 0.066 0.066 0.098 0.078 0.062 0.075
1.20 0.4774 0.30 0.31 0.288 0.230 0.184 0.177
1.22 0.6470 0.14 0.16 0.180 0.144 0.115 0.125
1.81 0.600 0.26 0.28 0.301 0.24 0.191 0.192
1.81 0.700 0.20 0.17 0.226 0.18 0.144 0.157
1.90 0.801 0.13 0.13 0.201 0.16 0.128 0.146
1.90 0.801 ~0.13! ~0.175! ~0.139! ~0.111! ~0.128!
2.57 0.200 1.45 1.54 1.67 1.33 1.06 0.73
2.51 0.300 1.00 0.89 1.05 0.84 0.67 0.52
2.47 0.400 0.68 0.611 0.73 0.58 0.46 0.39
2.48 0.500 0.45 0.478 0.54 0.43 0.34 0.32

~2.50! 0.500 ~0.471! ~0.532! ~0.425! ~0.339! ~0.306!
2.50 0.600 0.34 0.38 0.39 0.31 0.25 0.25
2.50 0.803 0.18 0.18 0.23 0.18 0.14 0.16
2.50 ~0.800! ~0.173! ~0.220! ~0.176! ~0.140! ~0.157!
2.51 1.040 0.07 0.07 0.13 0.10 0.08 0.10

~2.50! ~1.0648! ~0.051! ~0.110! ~0.088! ~0.070! ~0.092!
3.46 0.400 0.79 0.98 0.78 0.62 0.52

~0.819! ~0.971! ~0.774! ~0.618! ~0.500!
3.46 0.500 0.65 0.66 0.68 0.54 0.43 0.39
3.41 0.600 0.44 0.43 0.50 0.40 0.32 0.31
3.46 0.700 0.36 0.39 0.31 0.25 0.26

~0.331! ~0.382! ~0.305! ~0.243! ~0.249!
3.54 0.803 0.25 0.20 0.30 0.24 0.19 0.21
3.35 1.040 0.10 0.10 0.16 0.13 0.10 0.13
4.45 0.700 0.44 0.46 0.50 0.40 0.32 0.32
4.45 0.803 0.30 0.31 0.38 0.30 0.24 0.26

( i51
24 (Di ,MSD 2 Di ,closure)

2 5 0.141 0.079 0.479 0.840
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greater precision than any of the other transport coefficie
The technical procedure we have followed here is simila
that we developed previously for the mass and size dep
dence of a solute particle in a solvent system at a gi
(T* ,r* ) state point@13,14#.

A Lennard-Jones ~LJ! interaction potential, U(r )
54e@(s/r )122(s/r )6# was used, wheree is the well depth
ands is the diameter of the particle taken as the units of
energy and length, respectively. The interaction was tr
cated at an intermolecular separation ofr52.5s, and the
spherical distance for the Verlet neighbor table wasr
52.75s @15#. The To”xvaerd algorithm was used with a tim
step ofh50.005(ms2/e)1/2 @16#. The algorithm permits the
direct calculation ofK1 and K2 during the simulation as
being a function of the force@Eq. ~5!# and its first time de-
s.
o
n-
n

e
-

rivative @Eq. ~6!#. The updated canonical ensemble (NVT) in
the Nose´-Hoover formulation@18,19# was used with an iso-
thermal relaxation time oftT50.05 @17,20#. The time aver-
age for the mean-squared displacement in Eq.~1! was taken
over 500 time steps and the simulations were carried out
2–53105 time steps. Cubic periodic boundary conditio
were used on systems containingN5256 particles as in
Refs. @8,4#, where it was shown that there is a negligib
system size dependence of the transport coefficient foN
values equal to or larger thanN5256 @21#. The simulated
systems included high-density metastable states exempl
by the state point (T* ,r* )5(0.71,1.04), up to high tem
perature and low-density fluid states typified by (T* ,r* )
5(4.45,0.2).
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IV. RESULTS

The Mori series and MSD self-diffusion coefficients a
given in Table I for a wide range of (T* ,r* ). The diffusion
coefficients obtained directly from the simulation using t
MSD method are in good agreement with previous calcu
tions ~e.g., @8,4#! showing the expected general trend th
D increases with temperature and decreases with increa
density. If we now compare the several closures, we see
that the self-diffusion coefficients obtained with the exp
nential approximation are larger than those obtained by
MSD method, except forT*51.20 andr*50.4774. This
difference for a given value ofT* increases with the density
but for a given density tends to decrease with increas
T* . Considering all the cases studied, we find that typica
Dexp is about 25% greater thanDMSD.

The secant hyperbolic closure gives smaller values for
diffusion coefficient than the MSD method for most of th
cases studied. However, the differences get smaller with
creasing density for a given temperature and become e
~and evenDsech.DMSD! for the lower temperatures an
higher densities; see, for example, the data entries
(T* ,r* )5(0.71,0.8) and~0.75,0.8442! in Table I.

A comparison between the Joslin-Gray closure and
MSD method shows a clear crossover behavior. At a gi
temperature,DMSD.DJG for the low densities where ther
can be a large difference~of up to;100%! between the two
calculated values. This difference not only diminishes w
the increasing density, but the relation reverses for mid
high densities. A good example of this trend can be see
Table I forT*.2.5. The Gaussian approximation is simil
to the JG method in its relationship with the MSD metho
However there are significant quantitative differences. T
Gaussian and Joslin-Gray closures are quite similar in
first four state points in the table but forT*>1.20 we find

FIG. 1. Density dependence of the diffusion coefficients for s
eral of the isotherms of Table I. The filled in symbols are the res
using the MSD method, while open symbols correspond to th
calculated from the Gaussian approximation closure.
-
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DG.DJG, with theDG consequently much closer toDMSD.
The crossover of theDG values from below to above the
DMSD values, which we find also for JG occurs at low
densities. There are smaller relative differences betw
DMSD andDG , as can be confirmed from Table I and as al
seen in Fig. 1 for theT*51.81 isotherm.

In order to come to a conclusion about the best closure
the diffusion coefficient the standard deviation in the diffe
ences for the 24 evenly distributed state points studied h
been calculated. These are shown in the last row of Tabl
The Gaussian approximation has the smallest standard de
tion of the four closures. We propose that the Gaussian
sure is, on balance, the best representation of the MSD

-
s
e

FIG. 2. The temperature dependence of the self-diffusion co
ficients for a series of isochores.

TABLE II. Parameters characterizing the linear dependence
the self-diffusion coefficient with temperature for the densities
which the linear regression can be applied~see Fig. 2!. The simu-
lation derived data have been fitted to the analytic form,D(T* )
5a1bT* . The upper row corresponds to the coefficients obtain
from the MSD calculations and the lower row to those obtain
from the Gaussian approximation. In the last column,S represents
the sum of the squares of the differences between the MSD
Mori prediction for the self-diffusion coefficients, as in the last ro
in Table I.

r* a b 104S

0.60 0.030 0.122 24
0.017 0.116 4

0.70 0.012 0.099 5
0.021 0.086 1

0.80 0.005 0.067 1.2
0.015 0.064 0.7

0.91 20.030 0.057 7.8
0.013 0.050 0.7

1.04 20.030 0.037 1.6
0.004 0.037 0.2
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sults, with the JG method the worst of the four closu
schemes. The Gaussian gives best overall agreement with
MSD results, particularly for mid-to-high temperatures a
for any density. In the following discussion we will concen
trate on the (T* ,r* ) dependence of the self-diffusion coe
ficient obtained by the Gaussian approximation with the fi
two Mori coefficients.

Although we have chosen six temperatures~T*50.71,
1.20, 1.81, 2.50, 3.45, and 4.45!, and nine densities~r*
50.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.91, and 1.04! at
which to perform our study, not all of the data have be

FIG. 3. Density dependence of the Mori coefficients for all th
isotherms studied. Filled in~open! symbols correspond to the firs
~second! Mori coefficient, directly obtained from the (NVT) simu-
lation.

FIG. 4. As for Fig. 3, except the temperature dependence of
Mori coefficients for a series of isochores is shown.
the

t

n

plotted in the following figures to avoid too many overla
ping lines. In Fig. 1, the diffusion coefficients obtained d
rectly by molecular dynamicsDMSD shown as filled-in sym-
bols and DG by open symbols are plotted for sever
isotherms. The decay of the diffusion coefficient is simi
for both methods; however, there are notable relative tren
For the low-to-middle range temperatures~up to T*;2.50!
and densities~up to r*;0.7! the self-diffusion coefficients
by MSD are larger than those calculated from the Gauss
approximation. However, forr*'0.8 we find thatDG
'DMSD at all temperatures. For higher densities, in contra
DG.DMSD for the low-to-mid temperatures but tend to b
approximately equal for the higher temperatures. This tre
is also apparent in Fig. 2, which compares the self-diffus
coefficients along a series of isochores. The statistical fl
tuations in theDMSD, obtained are much greater than tho
from the Gaussian approximation, for the low-to-mid den
ties ~up to r*'0.5!. At higher density the two sets of self
diffusion coefficients show a near-linear dependence on t
perature with quite good agreement betweenDG and
DMSD; in fact, they coincide forr*50.8 at all temperatures
considered. For completeness, the coefficients of the lin

e

TABLE III. The coefficients specifying the linear dependence
the first Mori coefficient on temperature for all the densities studi
The simulation data have been fitted to the analytic formK1(T* )
5c1dT* . The asterisk~dagger! means that the lowest~two low-
est! temperatures have been taken out for the linear regression.
last column is as for Table II.

r* c d 1022S

0.20* 38.77 8.78 0.36
0.30* 49.53 19.36 0.15
0.40* 64.57 29.46 0.65
0.50* 83.86 43.50 1.57
0.60 110.66 58.70 1.87
0.70 125.42 85.32 3.22
0.80 173.20 111.98 11.80
0.91* 284.60 131.94 10.60
1.04† 468.83 178.54 1.45

TABLE IV. The parameters characterizing the linear depe
dence of the second Mori coefficient on temperature for all
densities studied. The experimental data have been fitted
K2(T* )5e1 f T* . The asterisk~dagger! means that the lowes
~two lowest! temperatures have been taken out for the linear reg
sion. The last column is as for Table II.

r* e f 1023S

0.20 140.17 596.65 6.57
0.30 105.18 615.40 0.72
0.40 97.70 627.91 3.74
0.50 88.85 643.15 1.78
0.60 69.58 654.60 3.62
0.70 37.56 680.50 4.55
0.80 46.25 691.32 1.94
0.91* 50.01 718.19 1.21
1.04† 33.3 775.05 1.67
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regression for the diffusion coefficient obtained by MSD a
Gaussian approximation are listed in Table II for the den
ties where temperature linearity can be applied.

Turning now to the (T* ,r* ) dependence of the Mori co
efficients, Fig. 3 gives the density dependence of the first
Mori coefficients~K1 , filled-in symbols;K2 open symbols!
along several isotherms. TheK2 values are typically severa
orders of magnitude greater than the correspondingK1 . Both
coefficients increase with temperature and density, vary
less dramatically with density forK2 than forK1 . When the
temperature decreases theK2 coefficient becomes essential
density independent, especially forT*50.71 and 1.20. At
the higher densities for these low-temperature isotherms
Mori coefficients show anomalous behavior that we attrib
to the fact that the fluids are in the two-phase region of
LJ phase diagram@4#; there is a sharp decay inK1 andK2 ,
as can be seen in Fig. 3 for (T* ,r* )5(0.7,0.91),~0.7,1.04!,
and ~1.2,1.04!. The Mori coefficients are essentially linea
with temperature at fixed density~see Fig. 4! apart from the
several low-temperature high-density metastable points.
K1 straight line regimes shift upwards with isochore dens
the slope and ordinate intercept increase. The correspon
K2 straight lines appear to pivot about a point in the pla
with increasing slopes and decreasing ordinate interc

FIG. 5. AT* /r* dependence of the Gaussian self-diffusion c
efficient for low-to-mid densities.

TABLE V. The coefficients specifying the linear dependence
the Gaussian Mori theory prediction for the self-diffusion coe
cient on temperature for the low-to-mid densities studied. The si
lation data have been fitted to the analytic formDG(T* )5g
1h(AT* /r* ). Last column is as in Table II.

r* g h 103S

0.20 21.42 0.36 7.0
0.30 20.74 0.30 0.2
0.40 20.49 0.28 0.9
0.50 20.32 0.24 2.0
0.60 20.22 0.21 0.8
i-

o

g

he
e
e

he
;
ing
e
t.

This ‘‘point of gyration’’ is close to the lowest temperatur
considered, i.e.,T*50.71, which can be considered to be t
minimum temperature for which linear regression can be
plied since below that value the system is metastable@4#. In
Tables III and IV the coefficients obtained from the line
regression forK1(T* ) andK2(T* ) have been collected. Th
K1 values shown in Figs. 3 and 4 are in good agreement w
those reported in Ref.@9# for the same state points.

Experimentally the self-diffusion coefficient in dense fl
ids goes as;T* /r* at constant pressure@22,23#. This is in
contrast to the gas limitAT* /r* at zero density. The linea
temperature dependence arises from the synergistic effe
increased kinetic energy and liquid expansion with incre
ing temperature~the latter makes available additional fre
volume in which the molecules can move!. Along isochores
this second contribution is not present and we recover
gas temperature dependence at all densities, as obse
many times by MD simulation for simple fluids~e.g.,
@24,25#!. In Fig. 5 we have plottedDG vs AT* /r* for sev-
eral isochores. There is linear behavior forDG for low-to-
mid densities~especially forr*50.3! at all temperatures
studied, and the parameters of the linear regression of th
data are presented in Table V. The near-linear regions of
two lowest density isochores are practically parallel. Ho
ever, for higher densities the slopes tend to diminish w

-

FIG. 6. The same as Fig. 5 for mid-to-high densities.

f

-
TABLE VI. The coefficients specifying the dependence of t

Gaussian self-diffusion coefficient on temperature for the mid-
high densities studied. The simulation data have been fitted to
analytic form DG(T* )5 i1 j (AT* /r* )1k(AT* /r* )2. Last col-
umn is as in Table II.

r* i j k 105S

0.70 20.019 0.040 0.032 6
0.80 20.008 0.026 0.034 5
0.91 20.021 0.038 0.031 7
1.04 0.001 0.001 0.040 3
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increasing density. For mid-to-high densities (0.7<r*
<1.04) a linear regression, it is no longer the best fit to
data, as can be seen also in Fig. 6. In fact, a second-o
polynomial regression in powers ofAT* /r* is required~see
Table VI, which lists the coefficients of these regression!.
Note that for the highest density, theDG values are practi-
cally proportional to (AT* /r* )2, as noted by Levesque an
Verlet, for similar densities@6#. Figure 7 and Table VII give
theDG vs AT* /r* for all the isotherms. As can be seen,
the isotherms are close to being straight lines with signific
overlap at the high densities and low temperatures~seen in
the bottom left part of Fig. 7!. Taking the best fit as the
reference line~T*52.5 in Table VII! one can see that in th
high-temperature limit~e.g.,T*53.45 and 4.45! the straight
lines practically coincide while for the lower temperatur
their slopes decrease drastically and curve over tendin
zero slope for the lowest temperature ofT*50.71 ~exclud-
ing the metastable state points in this!.

V. DISCUSSION AND CONCLUSIONS

As suggested in our previous work@26# we have evalu-
ated the first two Mori coefficients and self-diffusion coef
cient for many (T* ,r* ) values to determine the state poi
dependence of these coefficients, a similar procedure to
which we used for the effects of mass and volume change
a single solute particle@13,14#. Table I reveals, in agreemen
with Ref. @4#, that the relative merits of the closures depe
on the point in the LJ phase diagram at which the simulat
is performed. The hyperbolic secant closure is closest to
MSD values, for temperatures and densities close to
triple point, e.g., (T* ,r* )5(0.71,0.80) and (T* ,r* )
5(0.75,0.8442). The Joslin-Gray or even the exponen
closure are better for higher temperatures and lower dens
@see, for example, the states (T* ,r* )5(1.0,0.72) and
(T* ,r* )5(1.20,0.4774) in Table I#. The best overall behav

FIG. 7. AT* /r* dependence of the Gaussian self-diffusion c
efficient for all the isotherms studied.
e
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ior for a wide spectrum of temperature and densities is
the Gaussian approximation. It could be argued that the
periority of the Gaussian closure arises merely from a c
cellation of errors, but of all thead hocclosures it is the only
one that leads to a time-reversible velocity autocorrelat
function, and therefore its success may have more fundam
tal significance. The Gaussian function representation of
self-diffusion coefficient in terms of the two Mori coeffi
cients, Eq.~12!, has advantages over the direct method as
slope of the mean-square displacements can have large
certainty, especially at lower densities and moderate te
peratures, as can be seen in Fig. 2. In fact, the Gaus
approximation~or some improvement thereof! could ulti-
mately provide a better route to the self-diffusion coefficie
than by the direct method, especially for the lower tempe
tures and densities~see Fig. 2! where molecular dynamics i
not an efficient technique for exploring phase space. Ho
ever, for mid-to-high densities, both methods are consis
in giving the same linear behavior with temperature, as
shown in Fig. 2, and from their corresponding linear regr
sion parameters given in Table II.

The self-diffusion coefficients are linear with density f
the lowest isotherm considered, but decay as a higher-o
polynomial for the higher temperature isotherms; the or
of the polynomial increases with temperature~see Fig. 1!.
For the isothermT*51.20 a second-order dependence
density is found, whereas forT*51.81 and 2.50 it is third
order and forT*53.45 and 4.45 it is fourth order. This is th
case for both the MSD and Gaussian approximation me
ods, the results from the latter being a better fit to a poly
mial analytic form. The first Mori coefficient increases as
polynomial with density~see Fig. 3!, from first order for the
lowest isothermT*50.71, to second order for the higher
T*54.45. In contrast, the second Mori coefficient is le
density dependent, especially for the two lowest isother
~at least for the state points in which the system remains
equilibrium liquid! and smoothly curves upwards with in
creasing density for the higher temperature isotherms. B
Mori coefficients are essentially linear with temperature
fixed density, with a slope increasing with density as can
seen in Fig. 4. In Tables III and IV the Mori coefficients a
fitted to a linear regression inT* .

As shown in Fig. 5 and Table V for low-to-mid densitie
the self-diffusion coefficients in the Gaussian approximat
are linear in (AT* /r* ), as has been found in previous M
simulation studies@8,24,25#. Although for the higher densi-

-

TABLE VII. The coefficients specifying the dependence of t
Gaussian self-diffusion coefficient over all the isotherms studi
The simulation data have been fitted to the analytic formDG(r* )
5 l1m(AT* /r* ). Last column is as in Table II.

T* l m 103S

4.45 20.36 0.25 3
3.45 20.32 0.24 4
2.50 20.20 0.19 4
1.80 20.14 0.17 10
1.20 20.05 0.11 3
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ties a second-order polynomial inAT* /r* is a better repre-
sentation of the data~see Fig. 6 and Table VI!. As DG is
proportional toTAK2/K1 from Eqs.~11! and ~12!, then we
can conclude thatAK2/K1 is proportional to (AT* r* )21.

Perhaps the most significant result from this work is
decreasing density and increasing temperature dependen
the second Mori coefficient when compared with the fi
Mori coefficient, which agrees with the conclusions made
Lee and Chung from their extensive study of the LJ syst
@7#. Lee and Chung found that theK3 and higher-order Mori
coefficients are weakly density dependent but increasin
e
e of
t
y

ly

temperature dependent, which could have implications
improved Mori series closures.
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